

Single Event Effects in Avionics

Boeing Radiation Effects Lab

Presented to C-17 Program December 16, 1998

Dr. Eugene Normand Chief Scientist, Boeing Radiation Effects Lab

Overview of Presentation

- Introduction to Single Event Effects [SEE]
- Atmospheric Neutron Environment
- Evidence for Neutron-Induced SEU in Avionics
- Environments and Effects Related to Avionics SEU
- Results of Recent Avionics SEU Evaluation

Description of Various Types of Single Event Effects in ICs

Boeing Radiation Effects Lab

Single Event Effects [SEE]

- Disturbance of an active electronic device caused by a single energetic particle
 - Upset (SEU) --change in logic state, simplest example is a memory cell in RAM
 - Latchup (SEL) --sharp increase in current resulting from turning on parasitic *pnpn*
 - Damage or burnout (SEB) of power transistor or other high voltage device
 - Functional interrupt (SEFI)- malfunctions in more complex parts sometimes as lockup, hard error, etc

SEE: Which Environments are Important

Boeing Radiation Effects Lab

Space

- Galactic Cosmic Rays (heavy ions)
- Trapped Belts (protons)
- Solar Flares (protons & heavy ions)
- Aircraft Altitudes
 - Neutrons and Protons (Pions)
- Ground Level
 - Neutrons and Protons

Neutron Environment in the Atmosphere

Boeing Radiation Effects Lab

Neutrons, created by cosmic ray interactions with the O_2 and N_2 in the air, peak at ~60,000 ft. At 30,000 ft the neutrons are about 1/3the peak flux, and on the ground, ~1/400 of the peak flux. The peak flux is ~4 neutron/cm²sec. Other particles such as secondary protons and pions are also created, but for SEU the neutrons are the most important.

1-10 MeV Atmospheric Neutron Flux vs. Altitude, Simplified Boeing Model

1-10 MeV Atmospheric Neutron Flux vs. Latitude, Simplified Boeing Model

Energy Dependence of Atmospheric Neutron Flux, Simplified Boeing Model

Boeing Radiation Effects Lab

1/4/99

4 Independent Sources Confirm Atmospheric Neutrons as Cause of Avionics SEU

Boeing Radiation Effects Lab

Basis of Neutrons as Cause

1. Variation of in-flight SEU rates with altitude and latitude have the same behavior as the variation of atmospheric neutron flux with altitude and latitude

Airborne Data Serving as Basis

1. In-flight SEU rates from IBM experiments (over, Seattle, northern California and Norway) and from CC-2E computer in TS-3 E-3 aircraft (mainly over West Coast)

2. Agreement between the measured in-flight upset rates and the upset rates calculated using the atmospheric neutron flux and laboratory-measured SEU cross section data 2. In-flight SEU rates from IBM experiments (over Seattle, northern California and Norway), CC-2E computer on TS-3 (West Coast), CC-2E computer on military aircraft in Europe and SRAMs in other aircraft (trans-Atlantic and worldwide)

4 Independent Sources Confirm Atmospheric Neutrons as Cause of Avionics SEU, Cont'd

Boeing Radiation Effects Lab

Basis of Neutrons as Cause

3.Agreement between ground level SEU rates in SRAMs and DRAMs and those at aircraft altitudes, when accounting for the difference in atmospheric neutron flux at ground and 4E4 Ft.

Airborne Data Serving as Basis

3. In-flight SEU rates in 1 and 2 above and measured ground level rates at various locations in US (Seattle, Austin, TX and Batavia, IL)

4. Agreement between the energy deposition spectrum measured in the airborne CREAM detector and the spectrum measured in Boeing's surface barrier detector in the WNR high energy neutron beam at Los Alamos 4. Energy deposition spectra in the CREAM detector onboard Concorde on London-Washington, D.C., London-New York and Washington-Miami routes

1/4/99

Correlation of SEU Rate and Atmos. Neutron Flux with Altitude

12

1/4/99

Comparison of Measured and Calculated In-flight SEU Rates

Aircraft	Flight	Altitude,	System	Operat'g	SRAM	#	Meas'd	Calct'd
	Path	ft (×E3)		Condt'ns		Upset	Up/bit-hr	Up/bit-hr
E-3	Seattle	29	IBM	2.5 V	IMS 64K	10	5E-9	4.4-8 E-9
			Exp't					
ER-2	N. Cal.	65	IBM	2.5 V	IMS 64K	12	1.1E-8	1-2 E-8
			Exp't					
ER-2	Norway.	65	IBM	2.5 V	EDI	6	4.6E-9	8-14 E-9
			Exp't		256K			
E-3	Europe-1	29	CC-2E	5 V	IMS 64K	53	2.3 E-9	1.8-4.7E-9
E-3	Europe-2	29	CC-2E	5 V	IMS 64K	83	1.6E-9	1.3-2.7E-9
Com'cll	Trans-	~35	PERF.	5 V -	EDI	14	4.8E-8	2.3E-8
Jetliner	Altlantic		computer		256K			
F-4	S. Calif.	<25	AP-102	5 V	IMS 64K	4	5.4E-8	3.4E-10
Com'cl	World-	~33	Avionics	5 V	IDT		3.3E-10	5E-10
Jetliner	wide		computer		256K			

Comparison of SEU Rates on Ground, Field Data and WNR Rates

Boeing Radiation Effects Lab

	Observed Rate From Field	Upset Rate From WNR		
RAM	System/SER Source of Data	hr	Similar RAM at WNR	Up/b-hr
DRAN	ACPMAPS Computer Fermila	7E-13	TC514400-80	2E-12
"	IBM Field Tests	3E-13	MSM514400-80	4E-13
"	CRAY YMP-8, Bulk Storage	6E-13	TMS44100	2E-12
"	Nite Hawk 5800 Computer	2E-12		
DRAM	Simple Average	1E-12	Simple Average	2E-12
SRAM	Motorola Field SER tests	2E-12	IDT71256	1E-12
"	ICDs within patients	2E-12	HM65656	4E-12
"	CRAY YMP-8 Main Memory	2E-12	MCM6206	3E-12
"			MCM6246	2E-13
SRAM	Simple Average	2E-12	Simple Average (4)	2E-12

Conclude that field Upset rates (large computers, RAM vendor tests, etc.) agree with upset rates based on measured SEU rates in WNR neutron beam combined with measured cosmic ray neutron flux at ground level

Comparison of Ground-Level SEU Rates with Rates in Aircraft

Boeing Radiation Effects Lab

	Vendor/	Measr'd WNR SEU X-Sct'n	Gr'nd level SEU Rate, Up/bit-hr, WNR-	Calculated Ground SEU Rate, Up/bit- br BGR
RAM	(D or S)	cm²/bit	Scaled	Method
TC514400	Toshiba/D	1.2E-13	2.3E-12	2.1E-12*
MSM514400	Oki/D	2.2E-14	4.3E-13	N/A
TMS44100	TI/D	9.3E-14	1.8E-12	2.3E-12
IDT71256	IDT/S	6.5E-14	1.3E-12	2.3E-12
HM65656	Matra/S	1.9E-13	3.7E-12	1.2E-12
MCM6206	Motorola/S	1.4E-13	2.7E-12	7E-13*
MCM6246	Motorola/S	1.3E-14	2.4E-13	3.4E-13
Average (7				
RAMs)		1.9E-13	1.8E-12	2.5E-12

* Indicates Heavy ion SEU data from related RAM Ground level SEU rate ~2E-12 Upset/bit-hr

Aircraft SEU rate (neutron flux ~300 times higher) is 300×2E-12, ~6E-10 Upset/bit-hr, agrees w/ in-flight SEU rates

Correlation of Energy Deposition Spectra, CREAM on Concorde and SBD in WNR Beam

BREL Approach for Dealing with SEE in Avionics

Boeing Radiation Effects Lab

Testing

- WNR (at LANL) same neutron spectrum as atmospheric neutrons
- > 14 MeV generator (BREL)
- Analysis
 - > BGR method can utilize heavy ion data to estimate neutron-induced SEU response
 - New BGR-based model to explain neutron-induced latchup (SEL)

Use of the WNR Beam

- BREL has used WNR beam (LANL) to measure SEU in
 RAMs, µprocessors,
 SEL in gate arrays and SEB in power
 MOSFETs and high voltage diodes
- This means that these
 SEEs can be induced
 by neutrons in aircraft
 and on ground

Results of Recent SEE Evaluation of Avionics System

- Based on new mission computing and communications subsystems, total of ~20-30 SBCs
 - SEU in main memory well protected by EDAC
 - SEU in cache memory (protected by parity checking) will result in "reconfiguration" ~once every 2-3 hours
 - SEU in unprotected devices results in reboot once every ~100-200 hours (cumulative, all devices)
 - Includes microprocessors, FPGAs, MBU in main memory
 - Still large uncertainties in response of some devices that can only be reduced by SEU testing
 - Microprocessor response based only on PowerPC 603 that was tested with protons for space applications

Perceived Current Status of SEE in C-17 Avionics Systems

Boeing Radiation Effects Lab

Flight Controls

- Appears to be adequately protected through combination of EDAC and redundancy
- Mission Avionics
 - More likely to have subsystems that may not be adequately protected
 - Anecdotal story (from Wright-Patt, ~4 years ago) of upsets in computer during flight, fixed via EDAC
 - Could check operational logs for evidence of malfunctions during flight that could not be detected when box tested in the lab (Could Not Duplicate, Retest OK)
 - In commercial avionics experience, »20% of all CNDs are due to SEUs

How Can BREL Help?

- Provide environmental requirements section (atmospheric neutrons) to be incorporated into specs for future upgrades
- Assist in carrying out SEU evaluations/reviews of future avionics upgrades
- Carry out SEU evaluations of existing systems in which SEU problems most likely, e.g. new flat panel display
- Identify current systems containing EDAC protection from which direct evidence of SEU occurrences may be derived from operational logs
- Incorporate error logging features into EDAC protection to allow SEU occurrences to be monitored, thereby providing feedback for design of future systems